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Abstract

Convergent synthesis of HIJK ring model compounaof ciguatoxin is described. The present synthesis relied
on a palladium-catalyzed Suzuki cross-coupling reaction between eight-membered ketene acetal ghasphate
seven-membered alkylbora6e© 2000 Elsevier Science Ltd. All rights reserved.
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Marine polycyclic ethers, such as brevetoxins, ciguatoxins, and maitotoxin, present formidable and
challenging synthetic targets due to their structural complexity and exceptionally potent biological
activitiesl One most critical issue in the synthesis of these large natural products is the development
of synthetic methodology for convergent coupling of polyether fragnmiehis. connection with our
synthetic studies on ciguatoxin and its congefevge have recently developed a new strategy for
convergent synthesis of the polyether framework based on Suzuki cross-coupling of alkylboranes with
cyclic ketene acetal triflatésand phosphate.In these previous reports we utilized only six-membered
rings as the alkylborane coupling partners. The use of medium-sized alkylboranes will pave the way for
a general entry to the convergent assembly of polyether natural products. In this communication, we
describe a convergent and stereoselective synthesis of the HIJK ring hofleiguatoxins via cross-
coupling of a seven-membered alkylborane with an eight-membered ketene acetal phosphate.
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Ciguatoxin (CTX1B)

Tetracyclic ethed was chosen as an appropriate target to model the synthesis of the HIJK ring system
of ciguatoxins. We envisioned that compouhdould be prepared from ketene acetal phospBatad
alkylborane derived fromraxcolefin 3 (Scheme 1).

Scheme 1.

Ketene acetal phospha®evas prepared from the corresponding lacfofadiowing the procedure of
Nicolaou et aP Synthesis of seven-memberexbolefin 3 began with the known alcohdf (Scheme 2).
Protection o# as its TBS ether and oxidative cleavage of the double bond followed by Nedidction
of the resultant aldehyde provided alcoBolodination of5 followed by treatment with KBBu afforded
3.

Scheme 2. Reagents and conditions: (a) TBSCI, imidazole, DMF, rt, 73%; (k) G8@D, acetone:KO (4:1), rt, then NalQ,
rt; (¢c) NaBH,, MeOH, 0°C, 95% (two steps); (d},IPrP, imidazole, benzene, rt; (€) KBu, THF, 0°C, 96% (two steps)

Hydroboration of seven-memberesoolefin 3 with 9-BBN (2.6 equiv., THF) proceeded stereo-
selectively to give the corresponding 9-alkyl-9-BB) which was sequentially treated with 1 M
aqueous NaHC®(3 equiv.), ketene acetal phosphaté2 equiv.), and Pd(PRM (0.1 equiv.) in DMF
at 50°C for 20 h to provide cross-coupled prodiddh 86% yield. Stereoselective hydroboration7f
using thexylborane followed by oxidative workup and further oxidation of the resulting alcohol with
TPAP/NMC gave ketond. The stereochemistry &was determined by NOE experiments.

The C39 methyl grou}d was then installed by 1,4-addition of M@uLi to enoned (Scheme 3). Thus,
ketone8 was converted to enon@ using the lto—Saegusa protoddlReaction of9 with Me,CulLi
proceeded in a stereoselective manner to give the desired methylated pk@dilibe stereochemistry
of the methyl group was confirmed by a prominent NOE between 37-H and 39-H. Treatmedt of
with camphorsulfonic acid (CSA) in MeOH effected removal of the silyl and benzylidene acetal groups
and concomitant methyl acetal formation giving a dihydroxy methyl acetal, which was protected as its
diacetatell. Finally, treatment ofil with EtsSiH-BF; OE® led to the desired HIJK ring modélas a
single stereoisomer in 90% yield.
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Ja1-H, 420 = 9.2 Hz

Scheme 3. Reagents and conditions: (a) 9-BBN, THF, rt, then 1 M NatHZ;®d(PPh),, DMF, 50°C, 86%; (b) thexylborane,
THF, 0°C, HO,, NaOH, rt, 75%; (c) TPAP, NMO, 4 A MS, Ci€l,, rt, quant.; (d) LIHMDS, TMSCI, BN, THF, 78°C; (e)
Pd(OAc), CH3;CN, 60°C, 77% (two steps); (f) M€uLi, ELO, 20°C, 71%; (g)p-TsOH, MeOH, rt, 98%; (h) AgO, DMAP,
CH,Cl,, 0°C, 97%; (i) EtSiH-BF OEt, CH,Cl,—CH;CN (1:1), 0°C, 90%

In conclusion, the described synthesis demonstrated the potential of the Suzuki cross-coupling protocol
for a general entry to the convergent synthesis of polyether compounds. Further studies toward the total
synthesis of ciguatoxins and related natural products based on the present strategy are currently underway
and will be reported in due course.
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